On the Fundamental Group of self-affine plane Tiles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Connectedness of Self-affine Tiles

Let T be a self-affine tile in 2n defined by an integral expanding matrix A and a digit set D. The paper gives a necessary and sufficient condition for the connectedness of T. The condition can be checked algebraically via the characteristic polynomial of A. Through the use of this, it is shown that in 2#, for any integral expanding matrix A, there exists a digit set D such that the correspondi...

متن کامل

Rational Self-affine Tiles

An integral self-affine tile is the solution of a set equation AT = ⋃d∈D(T +d), where A is an n× n integer matrix and D is a finite subset of Z. In the recent decades, these objects and the induced tilings have been studied systematically. We extend this theory to matrices A ∈ Qn×n. We define rational self-affine tiles as compact subsets of the open subring R ×∏pKp of the adèle ring AK , where ...

متن کامل

Geometry of Self { Affine Tiles

For a self{similar or self{aane tile in R n we study the following questions: 1) What is the boundary? 2) What is the convex hull? We show that the boundary is a graph directed self{aane fractal, and in the self{similar case we give an algorithm to compute its dimension. We give necessary and suucient conditions for the convex hull to be a polytope, and we give a description of the Gauss map of...

متن کامل

Self-Affine Tiles in Rn

A self-affine tile in R is a set T of positive measure with A(T) = d ∈ $ < (T + d), where A is an expanding n × n real matrix with det (A) = m on integer, and $ = {d 1 ,d 2 , . . . , d m } ⊆ R is a set of m digits. It is known that self-affine tiles always give tilings of R by translation. This paper extends the known characterization of digit sets $ yielding self-affine tiles. It proves seve...

متن کامل

Disklikeness of Planar Self-affine Tiles

We consider the disklikeness of the planar self-affine tile T generated by an integral expanding matrix A and a consecutive collinear digit set D = {0, v, 2v, · · · , (|q|−1)v} ⊂ Z2. Let f(x) = x2+px+q be the characteristic polynomial of A. We show that the tile T is disklike if and only if 2|p| ≤ |q+2|. Moreover, T is a hexagonal tile for all the cases except when p = 0, in which case T is a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2006

ISSN: 0373-0956,1777-5310

DOI: 10.5802/aif.2247